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1 Introduction

Recent results on 2+1 dimensional superconformal Chern-Simons theories [1] have shed

new light on the AdS4/CFT3 correspondence. A long standing problem in establishing

this latter is the identification of the 2+1 dimensional superconformal gauge theories dual

to AdS4 supersymmetric backgrounds. In the past, attempts to find duals have focused on

Yang-Mills theories flowing in the IR to superconformal fixed points [2–5]. It seems now

that supersymmetric Chern-Simons theories can do a better job. The N = 6 ABJM [1]

model nicely incorporates all relevant features of a dual theory for the M theory background

AdS4×S7/Zk, including the maximally supersymmetric N = 8 case. Interestingly, for large

k a better supergravity description is provided by the type IIA background AdS4 × P
3. A

similar construction has been extended to models with less supersymmetry. Examples of

superconformal Chern-Simons theories with N = 3, 4, 5 supersymmetry have been studied

in [6–14]. The properties of N = 2 theories have been investigated in [15, 16] and many

models have been constructed and studied in [17–22]. For models with N = 2 supersym-

metry the reduction to type IIA is still less studied.

In this paper we consider the particular case of the N = 2, M theory solution AdS4 ×
M111, its reduction to type IIA and its supersymmetric deformations. In particular we

find a family of N = 2 supersymmetric AdS4 vacua in massive type IIA supergravity with

SU(3) × U(1)2 isometry, which include the AdS4 ×M111 reduction as special case.

The interest in such solutions is two-fold. On one side, they provide non-trivial exam-

ples of AdS4 supersymmetric vacua of massive type IIA. In spite of the many known AdS4
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vacua, the picture we have so far is not exhaustive. In particular, most of the solutions

have SU(3) structure [23–27], which is the simplest case but not the generic one. Only very

recently, the conditions for N = 1 supersymmetric solutions with generic SU(3) × SU(3)

structure have been explicitly written and a type IIA solution was given [28]. As we will

see later, in order to have non zero Roman mass and a running dilaton, type IIA back-

grounds must have SU(3)×SU(3) structure. In that respect, our solution is one of the first

non-trivial examples of AdS4 backgrounds with SU(3) × SU(3) structure.

On the other side, the solution is also relevant for the AdS4 × CFT3 correspondence.

As noticed in [29, 30], the Roman mass can be interpreted as the overall Chern-Simons

coupling in the dual gauge theory. More generally, all the integer Chern-Simons couplings

and the ranks of the gauge groups should appear in the dual supergravity description. The

authors of [29, 30] analysed the ABJM and ABJ models, finding solutions with N = 0 and

N = 1 supersymmetry which are deformations of AdS4 × P
3 and have a field theoretical

interpretation. They also find analogous solutions with N = 2 and N = 3 supersymmetry

at first order in perturbation theory [30], the entire solution still remaining to be found. The

same argument applies to all N = 2 Chern-Simons quivers. In particular it should always

exist a massive type IIA deformation of the original supergravity solution which corresponds

to a quiver with arbitrary Chern-Simons couplings and ranks. The deformation should

preserve the same N = 2 supersymmetry and the same global symmetry as the original

theory. The solution we find in this paper corresponds to the supergravity backgrounds

M111/Zk. A candidate dual Chern-Simons quiver has been proposed in [15] and further

studied in [17]. It is based on a superpotential with manifest SU(3) × U(1)2 symmetry.

The existence of a supergravity solution with the same symmetry can be seen as a partial

check of the correctness of the proposal.

We chose M111 because of its large global symmetry.1 The isometries will allow to

reduce the supersymmetry conditions to a set of ordinary first order equations. Fortu-

nately these equations are not over-constrained and reduce to a pair of equations for two

unknowns, which can be used to show the existence of a regular deformation. We will study

the equations numerically and perturbatively. The AdS4 ×CFT3 correspondence suggests

the existence of infinitely many other N = 2 supergravity solutions associated with all

Sasaki-Einstein manifolds with dual Chern-Simons quivers.2 The methods of [29] and this

paper still apply. However the smaller symmetry makes it more difficult to find explicit

solutions to all orders. For example, in the case of another famous coset manifold Q111,

studied in the Chern-Simons context in [18, 21], the global symmetry SU(2)3 is reduced to

a single SU(2). Generic Sasaki-Einstein manifolds are even more problematic having only

abelian isometries.

The paper is organized as follows. In section 2 we review the M theory compactification

on M111, its reduction to type IIA and the proposed dual quiver. In section 3, we study

1In this case the global symmetry is larger than in the corresponding N = 2 deformation of ABJM,

where the full solution is still lacking. To the best of our knowledge, the type IIA reduction of M111 enjoys

the largest global symmetry among the N = 2 models with known or proposed Chern-Simons duals.
2For example, M111 belongs to the family of Y p,q(P2) Sasaki-Einstein manifolds [31, 32]. These models

possess the same SU(3) symmetry and simply correspond to different choices of Chern-Simons couplings in

the dual quiver. We shall discuss the relation of our results to Y p,q(P2) in the following.

– 2 –
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how supersymmetry is realized in type IIA. In section 4, we study the conditions for

supersymmetric massive type IIA deformations with SU(3)×SU(3) structure. We adopt an

SU(3)×U(1)2 invariant ansatz, and we show that the system of supersymmetry equations

is not over-constrained. We determine algebraically all the quantities appearing in the

ansatz in terms of two unknowns for which we write a pair of coupled first order differential

equations. In section 5, we analyze numerically and perturbatively the solution, showing

that it is regular, and we determine the quantization conditions on the parameters. We

then interpret the result in terms of the dual Chern-Simons quiver. In the two appendices,

the conventions for the complex geometry of P
2 and the supersymmetry conditions for

SU(3) × SU(3) structures are reported.

2 The AdS4 × M
111 background and its dual

M theory admits N = 2 supersymmetric Freund-Rubin solutions of the form AdS4 ×H for

every Sasaki-Einstein seven-manifold H. In this paper we will focus on the homogeneous

space H = M111, popular in the eighties, at the time of the Kaluza-Klein program, due

to its intriguing isometry group, SU(3) × SU(2) × U(1). We will make use of this large

isometry to find new AdS4 solutions with N = 2 supersymmetry.

M111 is a U(1) bundle over P
2 × P

1. The metric reads [33, 34]3

ds2M111 =

[

ds2
P2 +

1

8
(dθ2 + sin2 θdφ2) +

1

64
(dτ + λ+ 2cos θdφ)2

]

. (2.1)

τ is an angle with period 4π, while the one-form

λ = −3 sin2 µ (dψ + cos θ̃ dφ̃) (2.2)

satisfies dλ = 16j0, where j0 is the Kähler form on P
2. For convenience of the reader, the

metric for P
2 and its natural complex structure are reported in appendix A, together with

a discussion of our conventions. M111 can be also described as the homogeneous space

SU(3) × SU(2) × U(1)

U(1) × U(1)
. (2.3)

Such a characterization helped in the study of the KK spectrum.

Various properties of M111, relevant for the AdS4 ×CFT3 correspondence, have been

analysed a long time ago in [2], where the KK spectrum and the dimension of baryonic

operators were studied. In the same paper, a candidate dual three-dimensional Yang-Mills

theory was proposed. There are various indications now-days that a better candidate for

the dual field theory is a Chern-Simons theory. An N = 2 Chern-Simons theory with the

right moduli space was identified in [15] and further studied in [17]. The theory is based on

a quiver with three gauge groups and three sets of chiral fields Ui, Vi,Wi, with i = 1, 2, 3,

3 In this and the following section, we set for simplicity the cosmological constant Λ = −3|µ|2 = 12.

We will set also gs = 1 for the asymptotic value of the dilaton in type IIA. These quantities can be easily

reintroduced by rescaling the metric (2.1) and the RR fluxes FRR → 1

gs

FRR.
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transforming in the (N, N̄ , 0), (0, N, N̄ ) and (N̄ , 0, N) representation of the gauge groups,

respectively. They interact with the superpotential

W = ǫijkUiVjWk . (2.4)

There is a Chern-Simons coupling ki for each gauge group but no Yang-Mills terms. The

theory has a global SU(3) symmetry rotating the indices i = 1, 2, 3 of U, V,W . Note

that this theory has the same field content and superpotential as the quiver associated to

D3-branes sitting at a C
3/Z3 singularity and describing a 3 + 1 N = 1 superconformal

theory.

With the choice of Chern-Simons couplings k1 = k, k2 = k, k3 = −2k, the moduli space

of the theory is the Calabi-Yau cone C(M111)/Zk, and the theory describes the M theory

background AdS4 ×M111/Zk. It is interesting to see in details how this happens [15, 17].

As discussed in [11, 13, 15], the D-term equations in a N = 2 Chern-Simons theory are

modified by a term proportional to the Chern-Simons coupling

Da = kaσ . (2.5)

In this formula, Da is the momentum map for the action of the a-th U(1) gauge field on

the elementary fields, and σ is an auxiliary field in the gauge multiplets. More explicitly,

the previous equations read

3
∑

i=1

|Ui|2 − |Vi|2 = k1σ ,

3
∑

i=1

|Vi|2 − |Wi|2 = k2σ ,

3
∑

i=1

|Wi|2 − |Ui|2 = k3σ . (2.6)

These equations should be supplemented by the F-term conditions

UiVj = UjVi ViWj = VjWi WiUj = WjUi i 6= j . (2.7)

The sum of the three equations in (2.6) is zero, reflecting the fact that the overall U(1)

acts trivially on the fields. The difference of the first two equations in (2.6) imposes the

vanishing of the momentum map for U(1)1 −U(1)2. The last equation just determines the

value of σ. We see that effectively we should only divide by the (complexified) gauge group

U(1)1 − U(1)2
4 which acts with charge +2 on Ui and charge −1 on Vi and Wi. U(1)3 is

broken to Zk by the Chern-Simons interactions and remains as a global symmetry.

For k = 1 the theory has symmetry SU(3) × SU(2) × U(1), where SU(3) acts on

the i, j, k indices, U(1) is the R-symmetry, which rotates all the fields (U, V,W ) with the

4As usual, a momentum map condition and the modding by the corresponding gauge group can be

combined into the modding by the complexified gauge group.
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same charge, and, finally, SU(2) is the enhancement of U(1)3 obtained by considering the

doublets RA
i = (Vi,Wi). The gauge invariant chiral operators are given by

On = (URR)n , (2.8)

where the SU(3) and SU(2) indices are symmetrized due to the F-term conditions. Since

the superpotential W must have R-charge two, On has R-charge 2n. In conclusion, there

is exactly one chiral multiplet with R-charge 2n transforming in the [3n, 0] representation

of SU(3) and the 2n representation of SU(2). We recognize the KK spectrum of M theory

compactified on M111 [2]. A more geometrical proof, based on toric geometry, that the

moduli space of the Chern-Simons theory is C(M111) can be found in [15, 17, 35].

For k 6= 1 we have to mod by Zk ∈ U(1)3, which acts with charge +1 on Wk and charge

−1 on Vj. The moduli space is now C(M111)/Zk and the SU(2) symmetry is broken to U(1).

Zk acts indeed on a circle in M111 reducing its radius. For large k the compactification

on AdS4 ×M111/Zk is effectively reduced to a type IIA compactification, as in the ABJM

model. It is easy to identify the action of Zk with a shift of φ in the metric (2.1). Reducing

along φ gives a supersymmetric type IIA background with non trivial dilaton, F2 flux and

SU(3) × U(1)2 symmetry. The metric is

ds210 = e2A ds2AdS4
+ ds26 , (2.9)

where the metric of the six-dimensional compact manifold is

ds26 = e2A[ds2
P2 +

1

8
dθ2 +

1

32

sin2 θ

1 + sin2 θ
(dτ + λ)2] . (2.10)

The term dτ + λ in the original metric determines a non trivial RR two-form

F2 = d

[

cos θ

2(1 + sin2 θ)
(dτ + λ)

]

. (2.11)

Finally, the warp factor is proportional to the dilaton and is given by

e2A = e2ϕ/3 =
1

4

√

1 + sin2 θ . (2.12)

Type IIA reductions of M111 and other Sasaki-Einstein manifolds have been considered

in the past [36, 37]. The reduction was performed on the obvious U(1) circle bundle with

the result of breaking supersymmetry. The natural U(1) bundle of the P
2 × P

1 fibration

corresponds indeed to the R-symmetry. A reduction along the Zk action, on the other

hand, preserves supersymmetry since Zk is a subgroup of the global SU(2) symmetry.

In the following section we will verify that the previous solution is N = 2 super-

symmetric. We will then find an N = 2 supersymmetric deformation of this solution in

massive type IIA preserving SU(3) symmetry. As suggested in [29] such solutions should

correspond to the case
∑

a ka 6= 0 and possibly generic Ni. The existence of a solution

is predicted by the Chern-Simons theory since a modification of
∑

a ka and Ni does not

affect the superpotential and preserves the SU(3) symmetry. It is quite remarkable that

such supergravity solution actually exists.

– 5 –
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3 Undeformed solution

We now verify that the background (2.9)–(2.12) is a solution of type IIA supergravity with

N = 2 supersymmetry. M111 admits two real Killing spinors which give, after reducing

to six dimensions, one Weyl spinor each and, hence, N = 2 supersymmetry. We use the

language of Generalised Complex Geometry [38, 39] which is briefly reviewed in appendix B.

Since each Killing spinor can be seen as defining an SU(3) structure, a convenient

way to check supersymmetry is to look for two pairs of SU(3) structure pure spinors

satisfying [40, 41]

(d −H∧)(e3A−ϕ Im Φ−) = −3e2A−ϕµ Im Φ+ +
e4A

8
∗ λ(F ) , (3.1)

(d −H∧)(e2A−ϕΦ+) = −2µeA−ϕ Re Φ− , (3.2)

where µ is related to the cosmological constant in AdS4 by Λ = −3|µ|2. By changing

phases in the spinors we can always take µ real, and we will do so in the following.

We can write the SU(3) structure pure spinors as in (B.9), choosing the parametrization

a = ieA/2ei(ρ+α) and x = eA/2eiα

Φ+ =
i

8
eiρeA e−iJ , Φ− = − i

8
ei(ρ+2α)eA Ω . (3.3)

The fibered structure of the six-dimensional metric suggests a natural splitting into

base and fiber directions for the choice of the holomorphic three-form Ω and Kähler form J

Ω = iω ∧ z , J = j +
i

2
z ∧ z̄ . (3.4)

Here z is a one form on the S2 fiber

z = − ieA

2
√

2

[

dθ + i
sin θ

2
√

1 + sin2 θ
(dτ + λ)

]

, (3.5)

while j and ω are a rotation of the natural complex structure on P
2 (see appendix A

for notations)

j = e2A(cos γ j0 + sin γRe ω̂0) ,

ω = e2A[(− sin γ j0 + cos γRe ω̂0) + i Im ω̂0] , (3.6)

with γ a function of the angle θ on the two-sphere.

With the choice (3.3), the equation (3.2) for the even pure spinor reduces to the

two conditions

d(3A− ϕ+ iρ) = 0 , (3.7)

dJ − iH = −2µe−iρe−A Re(−iei(ρ+2α) Ω) . (3.8)

The first equation sets ρ to a constant and implies the same proportionality as in (2.12)

between the dilaton and the warp factor

ϕ = 3A . (3.9)

– 6 –
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Since H = 0 in the solution, from the second equation we see that eiρ must be real.

Choosing ρ = 0, it is straightforward to verify that (3.8) is satisfied by the ansatz (3.4)–(3.6)

with α = π/4, µ = −2 and

cos γ =
cos θ

√

1 + sin2 θ
, sin γ =

√
2

sin θ
√

1 + sin2 θ
. (3.10)

Similarly, equation (3.1) for Φ− gives the closure of the imaginary part of Ω

d[e−A Im(Ω)] = 0 , (3.11)

and the RR fluxes

F4 = 0 , e4A ∗ F6 = −6 , (3.12)

F0 = 0 , e4A ∗ F2 = −d(eA Re Ω) + 3J2 . (3.13)

Again, it is easy to check that the ansatz (3.4)–(3.6) solves the equation for the closure of

Im Ω and that the F2 defined in (2.11) satisfies (3.13). Finally, we can take the equation

for F6 as a definition of the cosmological constant in the solution.

The discussion above proves that, reducing the M111 background, we obtain a solu-

tion of IIA with one supersymmetry. We still have to look for the second supersymmetry.

However, it is immediate to construct a second pair of pure spinors satisfying the equa-

tions (3.1),(3.2). These have the same form as in (3.3), with Ω and J defined as in (3.4),

but with a different complex structure obtained by a change of sign in the coordinates on

the base

j = e2A(− cos γ j0 + sin γRe ω̂0) , (3.14)

ω = e2A[(sin γ j0 + cos γRe ω̂0) − i Im ω̂0] , (3.15)

z = − ieA

2
√

2

[

dθ − i
sin θ

2
√

1 + sin2 θ
(dτ + λ)

]

. (3.16)

As already mentioned, there are other solutions of type IIA with N = 2 supersymmetry

and SU(3) structure with the same global symmetry. M111 belongs indeed to the larger

family of Sasaki-Einstein manifolds Y p,q(P2) with SU(3)×U(1)2 isometry. These solutions

correspond to different choices of Chern-Simons couplings with p = k1 + k2, k = 2k1 + k2

for k1, k2 ≥ 0 [32]. The reduction to a type IIA background can be found and studied

similarly.

4 Deformed solution

Now we come to massive type IIA deformations of the previous background that still

preserve N = 2 supersymmetry and have SU(3) global symmetry. These are obtained by

introducing the Roman mass F0.

We choose an SU(3) invariant ansatz for the metric

ds210 = e2A(θ)ds2AdS4
+ ds26 , (4.1)

– 7 –
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where the six-dimensional compact manifold is still a 2-dimensional fibration over P
2

ds26 = e2B(θ)

[

ds2
P2 +

1

8
ǫ2(θ)dθ2 +

1

64
Γ2(θ)(dτ + λ)2

]

. (4.2)

It is still convenient to define a one-form on the S2 fiber

z = −ieB(θ)e−iν(θ)

[

ǫ(θ)

2
√

2
dθ +

i

8
Γ(θ)(dτ + λ)

]

. (4.3)

The phase ν will be fixed shortly. Since we can redefine θ, one of the functions in the

ansatz is redundant. We will use the freedom to change coordinate later.

For the fluxes, we take the natural SU(3) invariant ansatz

F0 = f0 ,

F2 = f2(θ) j0 +
i

2
g2(θ) z ∧ z̄ ,

F4 = f4(θ) j0 ∧ j0 +
i

2
g4(θ) z ∧ z̄ ∧ j0 ,

F6 = e4B(θ) i

4
f6(θ) z ∧ z̄ ∧ j20 ,

H = h(θ)j0 ∧ dθ . (4.4)

The ansatz is SU(3) invariant since j0 and λ are.

It is easy to check that, when F0 6= 0, the supersymmetry equations for SU(3) structure

pure spinors require constant dilaton. Since the dilaton is running even in the unperturbed

solution, we are led to consider solutions with SU(3) × SU(3) structure. We can write the

SU(3) × SU(3) structure pure spinors as in (B.10), choosing the dielectric ansatz [30, 42]

a = i cos φ eiρeiαeA/2 , x = cosφ eiαeA/2 ,

b = −i sinφ eiρe−iαeA/2 , y = sinφ e−iαeA/2 . (4.5)

Here ρ, φ and α are functions of the angle θ on the fiber.

An SU(3) × SU(3) structure corresponds to a 4 + 2 splitting on the internal metric,

determined by a vector z. It is natural for us to use the splitting into P
2 and S2: z has

been defined above and j, ω are defined as in (3.6), with a possibly different function γ.

This is the natural generalization of what we used for the undeformed solution. A quick

analysis shows that we can consistently choose α = π/4 as in the undeformed case.

We need to solve (3.1), (3.2) for the new pure spinors. To simplify our notations, let

us notice that the 10-dimensional metric is invariant under the simultaneous rescaling of µ

and eA, so that we can reabsorb µ in the definition of A.5 We use this freedom to fix again

µ = −2. The one-form component of (3.2),

d(ie3A−ϕ eiρ cos 2φ) = −4e2A−ϕ Re(ieiρ sin 2φ z) , (4.6)

5Since Φ ∼ eA, the pure spinor equations can be reformulated in terms of eA/µ and e3A−ϕ and the

phases in the dielectric ansatz. The arbitrary constant in e3A−ϕ can be reabsorbed by a rescaling of the

RR fluxes and will be set to one in the text.

– 8 –
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immediately gives a lot of information. The fact that the right-hand side must be closed

implies that it is proportional to dθ. This can be obtained by choosing ν = ρ in (4.3). The

imaginary part of the previous equation then fixes the dilaton

e3A−ϕ =
1

cos 2φ cos ρ
. (4.7)

Again, for simplicity, we omitted an arbitrary constant. As easily seen from the equations,

the constant can be reintroduced by rescaling the RR fluxes, F → F/gs.

The remaining equations give several differential and algebraic constraints for few

unknown functions, A,B,Γ, ǫ, ρ, φ, γ, fi, γi. To these constraints we have to add the Bianchi

identities for fluxes

dF −H ∧ F = 0 . (4.8)

There are clearly more equations than unknowns. However, this formidable system is not

over-constrained and, with some patience, it can be reduced to a pair of linear differential

equations for two unknowns. All other quantities can be obtained algebraically and the

Bianchi identities are automatically satisfied.

In order to simplify the resulting set of equations, it is convenient to use the freedom of

redefining θ. We can always choose coordinates where γ(θ) is the function defined in (3.10).

With this choice we can write a pair of linear differential equations for the quantities φ and

w = 4e2(B−A),

φ′ =
sin 4φ cot θ [w − 2(sin2 2φ+ 2 tan2 θ)]

4[w (1 + sin2 θ) − 2 cos2 2φ (2 sin2 θ + cos2 θ sin2 2φ)]
,

w′ =
−w cot θ (sin2 2φ+ 2 tan2 θ)(w − 4 − 4 sin2 2φ)

2[w (1 + sin2 θ) − 2 cos2 2φ (2 sin2 θ + cos2 θ sin2 2φ)]
. (4.9)

All other quantities are then determined in terms of the previous ones. It turns out

that tan ρ = − cot θ sin 2φ/
√

2. The functions appearing in the metric are given by

e4A =
2
√

2

f0

sin 2φ (1 + sin2 θ)

cos2 2φ sin 2θ
,

ǫ = 2
√
w

√

4 tan2 θ + 2 sin2 2φ

sin 2φ (w − 4 tan2 θ − 2 sin2 2φ)
φ′ ,

Γ =
2√
w

cos θ
√

2 tan2 θ + sin2 2φ
√

1 + sin2 θ
. (4.10)

– 9 –



J
H
E
P
0
9
(
2
0
0
9
)
1
0
7

The fluxes read

h =
√

2e2A w
sin θ (sin2 2φ+ 2 tan2 θ)

√

(1 + sin2 θ) [w − (2 sin2 2φ+ 4 tan2 θ)]
φ′ ,

f2 = e−2A [w(1 + sin2 θ)− 4 cos2 θ (2 tan2 θ + sin2 2φ)]

2
√

1 + sin2 θ cos θ cos 2φ
,

g2 = −2e−4A [3w(1 + sin2 θ) − 8 cos2 θ (2 tan2 θ + sin2 2φ)]

(1 + sin2 θ)w
,

f4 = − w[w(1 + sin2 θ) − 8 cos2 θ (2 tan2 θ + sin2 2φ)] sin 2φ

8
√

2 sin 2θ cos2 2φ
,

g4 =
1

2
√

2
e−2A [3w(1 + sin2 θ) − 4 cos2 θ (2 tan2 θ + sin2 2φ)] tan 2φ

sin θ
√

1 + sin2 θ
,

f6 =
3√
2
f0

sin 2θ cos2 2φ

(1 + sin2 θ) sin 2φ
. (4.11)

In all the expressions above f0 is set to a constant by the Bianchi identities.

The solution has N = 2 supersymmetry. The second supersymmetry is obtained, as

in the unperturbed case, by changing complex structure as in (3.14)

j = e2A(− cos γ(θ) j0 + sin γ(θ)Reω0) , (4.12)

ω = e2A[(sin γ(θ) j0 + cos γ(θ)Reω0) − i Imω0] , (4.13)

z = −ieB(θ)e−iν(θ)

[

ǫ(θ)

2
√

2
dθ − i

8
Γ(θ)(dτ + λ)

]

. (4.14)

The pure spinors are given by the dielectric ansatz with φ → −φ, ρ → ρ. The super-

symmetry equations are then satisfied with the same metric and fluxes as before. The

relations (4.9)–(4.11) remain true.

5 Analysis and interpretation of the solution

We were not able to solve analytically the system of equations (4.9)–(4.11), but we can

study the properties of the solution using perturbation theory and numerical analysis.

We have solved the equations (4.9)–(4.11) up to third order. The idea is to define

a perturbative expansion where φ, ρ and the fluxes H,F4, F0 receive corrections at odd

orders, while the metric and fluxes F2, F6 receive corrections at even orders. The constant

f0 has an odd expansion, while µ an even one. At first order we find

φ(I) = 2c(I) cos 2θ , (5.1)

with fluxes

h(I) =
√

2c(I) sin3 θ ,

f
(I)
4 = 32

√
2 c(I) 3 cos 2θ − 1

cos 2θ − 3
,

g
(I)
4 = −64 c(I) cos 3θ − 13 cos θ

(3 − cos 2θ)3/2
. (5.2)
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The constant f0 requires a word of caution. As one can see from equation (4.10), the limit

f0 → 0 is singular. The correct unperturbed limit is obtained by sending simultaneously

f0 → 0 and φ→ 0. The solution of section 3 is obtained by setting

f
(I)
0 = 64

√
2c(I) . (5.3)

The metric receives corrections at second order, which can be easily determined and

which depend on a second arbitrary constant. We do not report the expressions here. We

have checked the regularity of the resulting metric for all θ, and, in particular, at the North

and South poles and at the equator of the sphere. Up to third order, the expansion gives

a perfectly regular solution of type IIA supergravity.

More generally, we can study the regularity of the metric near the North and South

pole by expanding θ around 0 and π. By solving the equations (4.9)–(4.11) near θ = 0

we find

φ = φ1θ −
(

2φ1

3
+

4φ3
1

3

)

θ3 +O(θ5) ,

w = w0 +
1

2
(4 − w0)(1 + 2φ2

1) θ
2 +O(θ4) . (5.4)

An identical expression holds at the South pole with different parameters φ̃1, w̃0. The S2

metric will be smooth near the poles if it reduces to the flat metric in polar coordinates.

It is easy to check, using equations (4.10), that

ǫ→ 2

√

1 + 2φ2
1

w0
, Γ →

√
2ǫ(0)θ , (5.5)

at the North pole, and similarly, with φ1 → φ̃1, w0 → w̃0, at the South pole. The vector z

has then an expansion (fixing an arbitrary point in P
2)

z ∼ d(θ − θP ) + i(θ − θP )
dτ

2
(5.6)

at both poles. Since τ has period 4π, this guaranties the regularity of the metric. Warp

factors and fluxes are similarly computed and are regular. The expansion of the equations

near the equator is also smooth.

We can further study the solution by numerical analysis. We can use φ1, w0 as pa-

rameters labeling the solutions of the system (4.10). The analysis shows that there is a

two-parameter family of regular solutions departing from the unperturbed one. The shape

of φ and e2A is shown in figure 1 for special values of the parameters.

The solution depends on four arbitrary parameters: the asymptotic value of the dilaton,

gs, and the radii of AdS4, P
2 and S2 (these are functions of f0, φ1, w0). To these, we can

add the zero modes of the B-field on the two two-cycles in the solution,6 for a total of

six parameters. Their values are constrained by flux quantization. f0 is interpreted as the

period of a zero form and must be an integer. For the other RR forms, we define Page

6We thank Alessandro Tomasiello for an enlightening discussion on this point.
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Figure 1. Graphics of φ and e2A for the values of parameters φ1 = 0.02 and w0 = 4. The symmetry

θ → π − θ is only present for the value w0 = 4.

charges associated to the quantities F̃2 = F2−Bf0, F̃4 = F4−B∧F2 and F̃6 = F6−B∧F4.

As we already said, the Bianchi identities are satisfied and these forms are closed. It follows

from the ansatz (4.4) that we can conveniently write them as

F2 −Bf0 = d

[

f2
(dτ + λ)

16

]

, F4 −B ∧ F2 = d

[

f4
(dτ + λ)

16

]

. (5.7)

We have to impose that the periods of these forms on all non trivial internal cycles are

integer (in suitable units). A basis for the two-cycles is given by a copy of P
1 ∈ P

2 at θ = 0

and by a copy of S2 at a chosen point in P
2. Similarly, a basis for the four-cycles is given

by P
2 and P

1 × S2. Equation (5.7) allows to evaluate easily the periods. For example,

without including the zero modes of the B field, we have
∫

S2

F̃2 = [f2(π) − f2(0)]
π

4
,

∫

P1

F̃2 = f2(0)

∫

P1

j0 . (5.8)

All these integrals can be expressed in terms of the parameters of the solutions. The the

zero modes of B can be easily included. We obtain six quantization conditions for the six

parameters in the solution.

Now we can compare the results with the field theory expectations. The original Chern-

Simons theory can be deformed preserving N = 2 supersymmetry by changing the ranks Ni

and by relaxing the condition
∑

a ka = 0. Since the superpotential is unchanged, the SU(3)

global symmetry is also preserved. The most general SU(3) invariant N = 2 Chern-Simons

quiver depends on six integer parameters, the three ranks Ni of the gauge groups and the

three Chern-Simons couplings ka. We have room to describe all these in our deformed

solution. The precise identification of the supergravity parameters with the field theory

ones is complicated. A very rough identification is as follows. The original parameters N

and k are still described by the constants in the dilaton and the AdS radius. The
∑

a ka

can be associated with f0 [29], while the difference between the ranks of the gauge groups

should correspond to the zero modes of the B-field [12]. The extra parameter corresponds

to varying the ratio of the F̃2 periods on the two-cycles. In the unperturbed solution, this

would correspond to replacing M111 with a generic member of the family Y p,q(P2). It is

reasonable that our solution for f0 6= 0 already describes the quiver with generic ki, as the

parameters of the supergravity solution suggest. In fact, one can explicitly verify that our
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set of equations in the limit f0 → 0 contain, in addition to the solution given in section 3

with w = 4, other solutions with non-trivial w corresponding to the dimensional reduction

of the manifolds Y p,q(P2) for generic (k1, k2,−k1 − k2) [31, 32]. The different values of ka

appear in type IIA as periods of F̃2.

As a final check, we can insert D2-brane probes in the background [30]. As discussed

in [30, 43, 44], the supersymmetry conditions for a probe D2 requires

d(Re Φ|(0)) ≡ d(tan ρ) = 0 . (5.9)

Using the perturbative and numerical expansion of the solution it is easy to check that a

supersymmetric locus for D2 probes corresponds to θ = π/2. On this locus, the τ fibration

over P
2 reproduces S5/Z3. The moduli space for a supersymmetric D2 is obtained by

adding the radial direction in AdS4 giving the cone over S5/Z3, which, as a complex

three-dimensional manifold, is C
3/Z3. This result matches the moduli space of Chern-

Simons quivers for
∑

a ka 6= 0, which becomes three-dimensional. This is simple to see

from equations (2.6). The sum of the three equations gives σ
∑

a ka = 0, which implies

σ = 0. The equations (2.6) become standard D-term constraints for all gauge groups. In

particular, we mod also by U(1)3, reducing the complex dimension of the moduli space of

one unit. The moduli space is then the same as for the 3 + 1 dimensional superconformal

theory based on the same quiver, that is C
3/Z3.

7

6 Conclusions

In this paper we have considered an AdS4 solution of massive type IIA supergravity with

N = 2 supersymmetry and SU(3)×U(1)2 global symmetry. Having non zero Roman mass

and non trivial dilaton, this solution has SU(3) × SU(3) structure.

The AdS4 ×CFT3 correspondence actually suggests the existence of many supersym-

metric AdS4 vacua still to be found. The method in this paper can be applied to various

Sasaki-Einstein metrics. The generalization to Y p,q(P2) is already contained in our de-

formed equations. More interesting would be to find solutions for the family Y p,q(P1×P
1),

which includes Q111. In this case, the global symmetry is typically reduced to SU(2)2 and

the corresponding solution can be harder to find. Even in the apparently simple case of

ABJM, the solution at all order is still lacking. The perturbative method of [30] however

always applies. It would be interesting to perform a perturbative expansion for the Sasaki-

Einstein manifolds where a dual quiver has been proposed. This would be an interesting

check of the correctness of the proposal, which is still unclear since many standard checks

of the correspondence cannot be fully performed in 2+1 dimensions.

One can also study deformations with N = 1 supersymmetry. Many solutions are

still predicted by the correspondence, since the dual quiver can be typically deformed to

N = 1, usually loosing some global symmetry. Alternatively, one can forget about the dual

7Recall that the case
P

a ka = 0, corresponding to zero Roman mass f0, is special: the moduli space

of the quiver is of complex dimension four [13, 15, 16] and we can uplift the solution to M theory. For
P

a ka 6= 0, differences between models seem to disappear: as discussed in the text, the moduli space of all

Y p,q(P2) quivers degenerates to C
3/Z3 and this is well captured by the type IIA geometry we found.
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interpretation, and search for N = 1 SU(3) × SU(3) solutions with large global symmetry.

As shown in this paper, although apparently complicated, the supersymmetry conditions

can be sometimes simplified and reduced to a simple set of equations. In particular, it

would be interesting to see whether there exist other N = 1 solutions of the equations we

wrote with SU(3) global symmetry. This is left for future work.

Note added. As noted in [45], P
2 can be replaced by any compact Kähler-Einstein base

B without affecting the conditions of supersymmetry and without modifying any of the

formulae in this paper. In fact, all the equations follow from the existence of a trio of forms

λ, j0, ω0 on the base satisfying dλ = 16j0 , dω0 = iλ2 ∧ ω0, which is a distinctive feature of

all Kähler-Einstein manifolds. For any M theory background Y p,q(B), the equations in this

paper define an AdS4 massive type IIA deformation with non zero Roman mass and with

the same global symmetries of B. This agrees with the expectation that the corresponding

quiver can be deformed by changing the Chern-Simons couplings and the ranks of the gauge

groups without breaking the global symmetries. This construction applies in particular to

B = P
1 × P

1 which can be used to describe Q111 and its quotients.
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A Conventions for P2

In our conventions, the metric on P
2 is normalized as

ds2
P2 =

3

4

[

dµ2 +
1

4
sin2 µ cos2 µ2(dψ + cos θ̃dφ̃)2 +

1

4
sin2 µ(dθ̃2 + sin2 θ̃dφ̃2)

]

(A.1)

and RP
2

ab = 9
2g

P
2

ab . We chose vierbein,

e1 =

√
3

4
r sinµ cosµ(dψ + cos θ̃ dφ̃) ,

e2 =

√
3

2
r dµ ,

e3 =

√
3

4
r sinµ(sinψ dθ − cosψ sin θ̃ dφ̃) ,

e4 =

√
3

4
r sinµ(cosψ dθ̃ + sinψ sin θ̃ dφ̃) , (A.2)

The complex structure of P
2 is given by z1 = e1 + ie2, z2 = e3 + ie4. We define the Kähler

form and the holomorphic two form as

j0 =
i

2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) , (A.3)

ω0 = dz1 ∧ dz2 . (A.4)
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It is also convenient to define a rescaled ω̂0 = eiτ/2ω0. A straightforward computation

gives the following useful relations:

dj0 = 0 ,

d Re ω̂0 = −dτ + λ

2
∧ Im ω̂0 ,

d Im ω̂0 =
dτ + λ

2
∧ Re ω̂0 ,

d(dτ + λ) = 16j0 , (A.5)

where the connection one-form λ = −3 sin2 µ (dψ + cos θ̃ dφ̃) satisfies dλ = 16j0. Let us

notice that j0 and λ are SU(3) invariant while ω̂0 is not.

B Supersymmetry equations and pure spinors

In this paper we will be interested in solutions of type IIA supergravity corresponding to

warped products of AdS4 with an internal compact manifold

ds210 = e2Ads24 + ds26 , (B.1)

where A is the warp factor.

The solutions are also characterised by non-trivial values for some of fluxes, respecting

the symmetries of AdS4. The NS H-field has only internal indices and the RR fields split

F (10)
p = vol4 ∧ F̂p−4 + Fp , (B.2)

where vol4 is the unwarped four-dimensional volume. We can use Hodge duality to express

the RR fluxes in terms of the internal components only

F̂p−4 = λ(∗6F6−p) , (B.3)

where λ acts on forms as the reversal of all indices λ(Fp) = (−1)Int[p/2]Fp.

Generically, a supersymmetric solution of type II supergravity can be characterised

by the form of the spinorial parameters solving the supersymmetry constraints. For back-

grounds which are of product type, such parameters factorise accordingly into 4 and 6-

dimensional spinors. For type IIA a suitable ansatz is

ǫ1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− , (B.4)

ǫ2 = ζ− ⊗ η2
+ + ζ+ ⊗ η2

− ,

where ζ+ is a four dimensional Weyl spinor and ηi
+, with i = 1, 2, are two a priori indepen-

dent six-dimensional Weyl spinors. The subscripts ± denote positive and negative chirality

spinors, in four and six dimensions.

The spinors η1 and η2 define an SU(3) structure on M , each. The intersection of the

two will define an SU(2) structure on M and a vector z. We can write

η1+ = aη+ + bχ+ , (B.5)

η2+ = xη+ + yχ+ ,
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where χ+ = 1
2z · η−. η− is the complex conjugate of η+ and z· denotes the Clifford

multiplication by the one-form zmγ
m.

If the two spinors are everywhere parallel,

η1
+ = aη+ , η2

+ = xη+ , (B.6)

with a and b complex functions, the two SU(3) structures are identified and the manifold

admits an SU(3) structure.

A convenient formalism to study supersymmetric flux backgrounds of this type in type

II theories is provided by Generalised Complex Geometry [38, 39]. Given a 6-dimension

manifold M , one considers the sum of tangent and cotangent bundles, TM ⊕ T ∗M , and

then construct the corresponding spinors. These are Spin(6, 6) and have a representation

in terms of polyforms on M : positive and negative chirality spinors will correspond to even

and odd forms, respectively,

Φ± ∈ Λeven/odd(T ∗M) . (B.7)

As far as supersymmetry is concerned, we will be interested in pure spinors, namely

vacua of the Clifford algebra. These can be constructed as tensor products of the super-

symmetry parameters η1 and η2

Φ± = η1
+ ⊗ η2 †

2 . (B.8)

The pair of pure spinors (B.8) are also compatible (they have three common annihilators)

and therefore define an SU(3) × SU(3) structure on TM ⊕ T ∗M . In a way the the two

SU(3) can be seen as corresponding to the two SU(3) structures associated to the spinors

η1 and η2. Then, depending on the relation between them, the explicit form of the pure

spinors will change.

For SU(3) structure, the pure spinors have a particularly simple form

Φ+ =
ax̄

8
e−iJ ,

Φ− = − iax
8

Ω , (B.9)

where J and Ω are the Kähler form and the holomorphic three-form on the manifold. For

the general SU(2) case, the pure spinors read

Φ+ =
1

8

[

ax̄e−ij + bȳeij − i(aȳω + x̄bω̄)
]

e1/2zz̄ ,

Φ− =
1

8

[

i(byω̄ − axω) + (bxeij − aye−ij)
]

z , (B.10)

with |a|2 + |b|2 = |x|2 + |y|2 = eA.

Supersymmetric vacua can be found by solving the ten-dimensional supersymmetry

constraints and the Bianchi identities for the NS and RR fluxes. In [40, 41], it was shown

that the supersymmetry conditions are equivalent to a set of differential equations for the

pure spinors Φ± on the internal manifold M . In type IIA such conditions read

(d −H∧)(eA−φ Re Φ−) = 0 , (B.11)

(d −H∧)(e3A−ϕ Im Φ−) = −3e2A−ϕµ Im Φ+ +
e4A

8
∗ λ(F ) , (B.12)

(d −H∧)(e2A−ϕΦ+) = −2µeA−ϕ Re Φ− , (B.13)
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where µ is related to the cosmological constant Λ as Λ = −3|µ|2. Notice that the first

equation is actually implied by the last one.

Similarly the Bianchi identities can be given in terms of the internal fluxes only

dH = 0 (d −H∧)F = 0 , (B.14)

where F is the sum of all internal RR field strengths

F = F0 + F2 + F4 + F6 . (B.15)
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[4] M. Billó, D. Fabbri, P. Fré, P. Merlatti and A. Zaffaroni, Rings of short N = 3 superfields in

three dimensions and M-theory on AdS4 ×N(0, 1, 0), Class. Quant. Grav. 18 (2001) 1269

[hep-th/0005219] [SPIRES].

[5] K. Oh and R. Tatar, Three dimensional SCFT from M2 branes at conifold singularities,

JHEP 02 (1999) 025 [hep-th/9810244] [SPIRES].

[6] M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories

and AdS4/CFT3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [SPIRES].

[7] Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories,

Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [SPIRES].

[8] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons

theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662]

[SPIRES].

[9] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons

theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [SPIRES].

[10] S. Terashima and F. Yagi, Orbifolding the membrane action, JHEP 12 (2008) 041

[arXiv:0807.0368] [SPIRES].

[11] A. Hanany, N. Mekareeya and A. Zaffaroni, Partition functions for membrane theories,

JHEP 09 (2008) 090 [arXiv:0806.4212] [SPIRES].

[12] O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043

[arXiv:0807.4924] [SPIRES].

[13] D.L. Jafferis and A. Tomasiello, A simple class of N = 3 gauge/gravity duals,

JHEP 10 (2008) 101 [arXiv:0808.0864] [SPIRES].

[14] H. Fuji, S. Terashima and M. Yamazaki, A new N = 4 membrane action via orbifold,

Nucl. Phys. B 810 (2009) 354 [arXiv:0805.1997] [SPIRES].

– 17 –

http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1218
http://dx.doi.org/10.1016/S0550-3213(00)00098-5
http://arxiv.org/abs/hep-th/9907219
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9907219
http://dx.doi.org/10.1088/1126-6708/2000/03/011
http://arxiv.org/abs/hep-th/9912107
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9912107
http://dx.doi.org/10.1088/0264-9381/18/7/310
http://arxiv.org/abs/hep-th/0005219
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0005219
http://dx.doi.org/10.1088/1126-6708/1999/02/025
http://arxiv.org/abs/hep-th/9810244
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9810244
http://dx.doi.org/10.1088/1126-6708/2008/09/072
http://arxiv.org/abs/0806.1519
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1519
http://dx.doi.org/10.1143/PTP.120.509
http://arxiv.org/abs/0806.3727
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.3727
http://dx.doi.org/10.1088/1126-6708/2008/07/091
http://arxiv.org/abs/0805.3662
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.3662
http://dx.doi.org/10.1088/1126-6708/2008/09/002
http://arxiv.org/abs/0806.4977
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4977
http://dx.doi.org/10.1088/1126-6708/2008/12/041
http://arxiv.org/abs/0807.0368
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0368
http://dx.doi.org/10.1088/1126-6708/2008/09/090
http://arxiv.org/abs/0806.4212
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4212
http://dx.doi.org/10.1088/1126-6708/2008/11/043
http://arxiv.org/abs/0807.4924
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4924
http://dx.doi.org/10.1088/1126-6708/2008/10/101
http://arxiv.org/abs/0808.0864
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.0864
http://dx.doi.org/10.1016/j.nuclphysb.2008.11.012
http://arxiv.org/abs/0805.1997
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.1997


J
H
E
P
0
9
(
2
0
0
9
)
1
0
7

[15] D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and

AdS4/CFT3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [SPIRES].

[16] A. Hanany and A. Zaffaroni, Tilings, Chern-Simons theories and M2 branes,

JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].

[17] A. Hanany, D. Vegh and A. Zaffaroni, Brane tilings and M2 branes, JHEP 03 (2009) 012

[arXiv:0809.1440] [SPIRES].

[18] S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M2-brane theories for

generic toric singularities, JHEP 12 (2008) 110 [arXiv:0809.3237] [SPIRES].

[19] A. Hanany and Y.-H. He, M2-branes and quiver Chern-Simons: a taxonomic study,

arXiv:0811.4044 [SPIRES].

[20] J. Davey, A. Hanany, N. Mekareeya and G. Torri, Phases of M2-brane theories,

JHEP 06 (2009) 025 [arXiv:0903.3234] [SPIRES].

[21] S. Franco, I.R. Klebanov and D. Rodriguez-Gomez, M2-branes on orbifolds of the cone over

Q1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [SPIRES].

[22] A. Amariti, D. Forcella, L. Girardello and A. Mariotti, 3D Seiberg-like dualities and M2

branes, arXiv:0903.3222 [SPIRES].
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